Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.813
Filtrar
1.
Pestic Biochem Physiol ; 200: 105814, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582586

RESUMO

To explore active natural products against tobacco powdery mildew caused by Golovinomyces cichoracearum, an extract from the fermentation of endophytic Aspergillus fumigatus 0338 was investigated. The mechanisms of action for active compounds were also studied in detail. As a result, 14 indole alkaloid derivatives were isolated, with seven being newly discovered (1-7) and the remaining seven previously described (8-14). Notably, compounds 1-3 are rare linearly fused 6/6/5 tricyclic prenylated indole alkaloids, with asperversiamide J being the only known natural product of this kind. The isopentenyl substitutions at the 5-position in compounds 4 and 5 are also rare, with only compounds 1-(5-prenyl-1H-indol-3-yl)-propan-2-one (8) and 1-(6-methoxy-5-prenyl-1H-indol3-yl)-propan-2-one currently available. In addition, compounds 6 and 7 are new framework indole alkaloid derivatives bearing a 6-methyl-1,7-dihydro-2H-azepin-2-one ring. The purified compounds were evaluated for their activity against G. cichoracearum, and the results revealed that compounds 7 and 9 demonstrated obvious anti-G. cichoracearum activities with an inhibition rate of 82.6% and 85.2%, respectively, at a concentration of 250 µg/mL, these rates were better than that of the positive control agent, carbendazim (78.6%). The protective and curative effects of compounds 7 and 9 were also better than that of positive control, at the same concentration. Moreover, the mechanistic study showed that treatment with compound 9 significantly increased the structural tightness of tobacco leaves and directly affect the conidiospores of G. cichoracearum, thereby enhancing resistance. Compounds 7 and 9 could also induce systemic acquired resistance (SAR), directly regulating the expression of defense enzymes, defense genes, and plant semaphorins, which may further contribute to increased plant resistance. Based on the activity experiments and molecular dockings, the indole core structure may be the foundation of these compounds' anti-G. cichoracearum activity. Among them, the indole derivative parent structures of compounds 6, 7, and 9 exhibit strong effects. Moreover, the methoxy substitution in compound 7 can enhance their activity. By isolating and structurally identifying the above indole alkaloids, new candidates for anti-powdery mildew chemical screening were discovered, which could enhance the utilization of N. tabacum-derived fungi in pesticide development.


Assuntos
Alcaloides , Aspergillus fumigatus , Neopreno , Tabaco , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Alcaloides/farmacologia
2.
Front Endocrinol (Lausanne) ; 15: 1360054, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638133

RESUMO

Introduction: Osteoporosis is a systemic age-related disease characterized by reduced bone mass and microstructure deterioration, leading to increased risk of bone fragility fractures. Osteoporosis is a worldwide major health care problem and there is a need for preventive approaches. Methods and results: Apigenin and Rutaecarpine are plant-derived antioxidants identified through functional screen of a natural product library (143 compounds) as enhancers of osteoblastic differentiation of human bone marrow stromal stem cells (hBMSCs). Global gene expression profiling and Western blot analysis revealed activation of several intra-cellular signaling pathways including focal adhesion kinase (FAK) and TGFß. Pharmacological inhibition of FAK using PF-573228 (5 µM) and TGFß using SB505124 (1µM), diminished Apigenin- and Rutaecarpine-induced osteoblast differentiation. In vitro treatment with Apigenin and Rutaecarpine, of primary hBMSCs obtained from elderly female patients enhanced osteoblast differentiation compared with primary hBMSCs obtained from young female donors. Ex-vivo treatment with Apigenin and Rutaecarpine of organotypic embryonic chick-femur culture significantly increased bone volume and cortical thickness compared to control as estimated by µCT-scanning. Discussion: Our data revealed that Apigenin and Rutaecarpine enhance osteoblastic differentiation, bone formation, and reduce the age-related effects of hBMSCs. Therefore, Apigenin and Rutaecarpine cellular treatment represent a potential strategy for maintaining hBMSCs health during aging and osteoporosis.


Assuntos
Alcaloides Indólicos , Células-Tronco Mesenquimais , Osteoporose , Quinazolinonas , Humanos , Idoso , Apigenina/farmacologia , Apigenina/metabolismo , Osteoblastos/metabolismo , Senescência Celular , Fator de Crescimento Transformador beta/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo
3.
Int Immunopharmacol ; 130: 111790, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38447417

RESUMO

OBJECTIVE: Diabetic kidney disease (DKD) is the most common cause of the end-stage renal disease, which has limited treatment options. Rutaecarpine has anti-inflammatory effects, however, it has not been studied in DKD. Pyroptosis is a newly discovered mode of podocyte death related to inflammation. This study aimed to explore whether Rutaecarpine can ameliorate DKD and to clarify its possible mechanism. METHODS: In this study, we investigated the effects of Rutaecarpine on DKD using diabetic mice model (db/db mice) and high glucose (HG)-stimulated mouse podocyte clone 5 (MPC5) cells. Quantitative reverse transcription polymerase chain reaction and western blot were performed to detect the related gene and protein levels. We applied pharmacological prediction, co-immunoprecipitation assay, cellular thermal shift assay, surface plasmon resonance to find the target and pathway of the substances. Gene knockdown experiments confirmed this view in HG-stimulated MPC5 cells. RESULTS: Rutaecarpine significantly reduced proteinuria, histopathological damage, and pyroptosis of podocytes in a dose-dependent manner in db/db mice. Rutaecarpine also protected high glucose induced MPC5 injury in vitro experiments. Mechanistically, Rutaecarpine can inhibit pyroptosis in HG-stimulated MPC5 by reducing the expression of VEGFR2. VEGFR2 is a target of Rutaecarpine in MPC5 cells and directly binds to the pyroptosis initiation signal, NLRP3. VEGFR2-knockdown disrupted the beneficial effects of Rutaecarpine in HG-stimulated MPC5 cells. CONCLUSION: Rutaecarpine inhibits renal inflammation and pyroptosis through VEGFR2/NLRP3 pathway, thereby alleviating glomerular podocyte injury. These findings highlight the potential of Rutaecarpine as a novel drug for DKD treatment.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Alcaloides Indólicos , Podócitos , Piroptose , Quinazolinonas , Animais , Camundongos , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Glucose/metabolismo , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/uso terapêutico , Inflamação/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Podócitos/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico , Camundongos Endogâmicos C57BL , Masculino
4.
Org Biomol Chem ; 22(13): 2620-2629, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38451121

RESUMO

Mechanochemical reactions achieved by processes such as milling and grinding are promising alternatives to traditional solution-based chemistry. This approach not only eliminates the need for large amounts of solvents, thereby reducing waste generation, but also finds applications in chemical and materials synthesis. The focus of this study is on the synthesis of quinazolinone derivatives by ball milling, in particular evodiamine and rutaecarpine analogues. These compounds are of interest due to their diverse bioactivities, including potential anticancer properties. The study examines the reactions carried out under ball milling conditions, emphasizing their efficiency in terms of shorter reaction times and reduced environmental impact compared to conventional methods. The ball milling reaction of evodiamine and rutaecarpine analogues resulted in yields of 63-78% and 22-61%, respectively. In addition, these compounds were tested for their cytotoxic activity, and evodiamine exhibited an IC50 of 0.75 ± 0.04 µg mL-1 against the Ca9-22 cell line. At its core, this research represents a new means to synthesise these compounds, providing a more environmentally friendly and sustainable alternative to traditional approaches.


Assuntos
Alcaloides Indólicos , Quinazolinonas , Quinazolinas/química
5.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542362

RESUMO

Indole alkaloids are the main bioactive molecules of the Gelsemium genus plants. Diverse reports have shown the beneficial actions of Gelsemium alkaloids on the pathological states of the central nervous system (CNS). Nevertheless, Gelsemium alkaloids are toxic for mammals. To date, the molecular targets underlying the biological actions of Gelsemium alkaloids at the CNS remain poorly defined. Functional studies have determined that gelsemine is a modulator of glycine receptors (GlyRs) and GABAA receptors (GABAARs), which are ligand-gated ion channels of the CNS. The molecular and physicochemical determinants involved in the interactions between Gelsemium alkaloids and these channels are still undefined. We used electrophysiological recordings and bioinformatic approaches to determine the pharmacological profile and the molecular interactions between koumine, gelsemine, gelsevirine, and humantenmine and these ion channels. GlyRs composed of α1 subunits were inhibited by koumine and gelsevirine (IC50 of 31.5 ± 1.7 and 40.6 ± 8.2 µM, respectively), while humantenmine did not display any detectable activity. The examination of GlyRs composed of α2 and α3 subunits showed similar results. Likewise, GABAARs were inhibited by koumine and were insensitive to humantenmine. Further assays with chimeric and mutated GlyRs showed that the extracellular domain and residues within the orthosteric site were critical for the alkaloid effects, while the pharmacophore modeling revealed the physicochemical features of the alkaloids for the functional modulation. Our study provides novel information about the molecular determinants and functional actions of four major Gelsemium indole alkaloids on inhibitory receptors, expanding our knowledge regarding the interaction of these types of compounds with protein targets of the CNS.


Assuntos
Alcaloides , Gelsemium , Animais , Gelsemium/química , Alcaloides/química , Extratos Vegetais/química , Alcaloides Indólicos/química , Ácido gama-Aminobutírico , Mamíferos/metabolismo
6.
J Agric Food Chem ; 72(13): 6988-6997, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38506764

RESUMO

Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv oryzae (Xoo) is extremely harmful to rice production. The traditional control approach is to use bactericides that target key bacterial growth factors, but the selection pressure on the pathogen makes resistant strains the dominant bacterial strains, leading to a decline in bactericidal efficacy. Type III secretion system (T3SS) is a conserved and critical virulence factor in most Gram-negative bacteria, and its expression or absence does not affect bacterial growth, rendering it an ideal target for creating drugs against Gram-negative pathogens. In this work, we synthesized a range of derivatives from cryptolepine and neocryptolepine. We found that compound Z-8 could inhibit the expression of Xoo T3SS-related genes without affecting the growth of bacteria. an in vivo bioassay showed that compound Z-8 could effectively reduce the hypersensitive response (HR) induced by Xoo in tobacco and reduce the pathogenicity of Xoo in rice. Furthermore, it exhibited synergy in control of bacterial leaf blight when combined with the quorum quenching bacterial F20.


Assuntos
Alcaloides , Alcaloides Indólicos , Oryza , Quinolinas , Xanthomonas , Oryza/genética , Sistemas de Secreção Tipo III/genética , Bactérias/metabolismo , Xanthomonas/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
7.
Science ; 383(6690): 1448-1454, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547266

RESUMO

The defensive alkaloid gramine not only protects barley and other grasses from insects but also negatively affects their palatability to ruminants. The key gene for gramine formation has remained elusive, hampering breeding initiatives. In this work, we report that a gene encoding cytochrome P450 monooxygenase CYP76M57, which we name AMI synthase (AMIS), enables the production of gramine in Nicotiana benthamiana, Arabidopsis thaliana, and Saccharomyces cerevisiae. We reconstituted gramine production in the gramine-free barley (Hordeum vulgare) variety Golden Promise and eliminated it from cultivar Tafeno by Cas-mediated gene editing. In vitro experiments unraveled that an unexpected cryptic oxidative rearrangement underlies this noncanonical conversion of an amino acid to a chain-shortened biogenic amine. The discovery of the genetic basis of gramine formation now permits tailor-made optimization of gramine-linked traits in barley by plant breeding.


Assuntos
Sistema Enzimático do Citocromo P-450 , Hordeum , Alcaloides Indólicos , Família Multigênica , Hordeum/genética , Hordeum/metabolismo , Alcaloides Indólicos/metabolismo , Melhoramento Vegetal , Oxirredução , Triptofano/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Edição de Genes , Genes de Plantas
8.
Phytomedicine ; 126: 155421, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430819

RESUMO

BACKGROUND: The presence of plasmid-mediated resistance-nodulation-division (RND) efflux pump gene cluster tmexCD1-toprJ1 and its related variants has been associated with heightened resistance to tigecycline, thus diminishing its effectiveness. In this study, we explored the potential of gramine, a naturally occurring indole alkaloid, as an innovative adjuvant to enhance the treatment of infections caused by K. pneumoniae carrying tmexCD-toprJ-like gene clusters. METHODS: The synergistic potential of gramine in combination with antibiotics against both planktonic and drug-tolerant multidrug-resistant Enterobacterales was evaluated using the checkerboard microbroth dilution technique and time-killing curve analyses. Afterwards, the proton motive force (PMF) of cell membrane, the function of efflux pump and the activity of antioxidant system were determined by fluorescence assay and RT-PCR. The intracellular accumulation of tigecycline was evaluated by HPLC-MS/MS. The respiration rate, bacterial ATP level and the NAD+/NADH ratio were investigated to reveal the metabolism state. Finally, the safety of gramine was assessed through hemolytic activity and cytotoxicity assays. Two animal infection models were used to evaluate the in vivo synergistic effect. RESULTS: Gramine significantly potentiated tigecycline and ciprofloxacin activity against tmexCD1-toprJ1 and its variants-positive pathogens. Importantly, the synergistic activity was also observed against bacteria in special physiological states such as biofilms and persister cells. The mechanism study showed that gramine possesses the capability to augment tigecycline accumulation within cells by disrupting the proton motive force (PMF) and inhibiting the efflux pump functionality. In addition, the bacterial respiration rate, intracellular ATP level and tricarboxylic acid cycle (TCA) were promoted under the treatment of gramine. Notably, gramine effectively restored tigecycline activity in multiple animal infection models infected by tmexCD1-toprJ1 positive K. pneumoniae (RGF105-1). CONCLUSION: This study provides the first evidence of gramine's therapeutic potential as a novel tigecycline adjuvant for treating infections caused by K. pneumoniae carrying tmexCD-toprJ-like gene clusters.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Animais , Tigeciclina/metabolismo , Tigeciclina/farmacologia , Tigeciclina/uso terapêutico , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Minociclina/farmacologia , Minociclina/metabolismo , Minociclina/uso terapêutico , Espectrometria de Massas em Tandem , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Alcaloides Indólicos/farmacologia , Trifosfato de Adenosina/metabolismo , Testes de Sensibilidade Microbiana
9.
Molecules ; 29(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474571

RESUMO

The Euodia genus comprises numerous untapped medicinal plants that warrant thorough evaluation for their potential as valuable natural sources of herbal medicine or food flavorings. In this study, untargeted metabolomics and in vitro functional methods were employed to analyze fruit extracts from 11 significant species of the Euodia genus. An investigation of the distribution of metabolites (quinolone and indole quinazoline alkaloids) in these species indicated that E. rutaecarpa (Euodia rutaecarpa) was the most widely distributed species, followed by E. compacta (Euodia compacta), E. glabrifolia (Euodia glabrifolia), E. austrosinensis (Euodia austrosinensis), and E. fargesii (Euodia fargesii). There have been reports on the close correlation between indole quinazoline alkaloids and their anti-tumor activity, especially in E. rutaecarpa fruits which exhibit effectiveness against various types of cancer, such as SGC-7901, Hela, A549, and other cancer cell lines. Additionally, the E. rutaecarpa plant contains indole quinazoline alkaloids, which possess remarkable antibacterial properties. Our results offer novel insights into the utilization of Euodia resources in the pharmaceutical industry.


Assuntos
Alcaloides , Evodia , Plantas Medicinais , Quinolonas , Rutaceae , Humanos , Extratos Vegetais , Alcaloides Indólicos , Células HeLa , Quinazolinas
10.
J Am Chem Soc ; 146(11): 7616-7627, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38446772

RESUMO

Natural products and their analogues are significant sources of therapeutic lead compounds. However, synthetic strategies for generating large collections of these molecules remain a significant challenge. The most difficult step in their synthesis is the design of a common intermediate that can be easily transformed into natural products belonging to different families. This study demonstrates the evolution of synthetic tactics designed to assemble the functionalized piperidines present in indole alkaloids from a common intermediate. More importantly, we also report a previously unknown Ir- and Er-catalyzed dehydrogenative spirocyclization reaction that enables direct access to spirocyclic oxindole alkaloids. As a practical application, the asymmetric total syntheses of 29 natural alkaloids belonging to different families were accomplished by following a uniform synthetic route. The proposed methodology extends the capability of the iridium-catalyzed dehydrogenative coupling reaction to the realm of indole-alkaloid synthesis and provides new opportunities for the efficient preparation of natural product-like molecules.


Assuntos
Alcaloides , Produtos Biológicos , Humanos , Estereoisomerismo , Alcaloides Indólicos , Oxindóis
11.
J Nat Med ; 78(2): 382-392, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38347371

RESUMO

A new dimeric indole alkaloid, vincazalidine A consisting of an aspidosperma type and a modified iboga type with 1-azatricyclo ring system consisting of one azepane and two piperidine rings coupled with an oxazolidine ring was isolated from Catharanthus roseus, and the structure including absolute stereochemistry was elucidated on the basis of spectroscopic data as well as DP4 statistical analysis. Vincazalidine A induced G2 arrest and subsequent apoptosis in human lung carcinoma cell line, A549 cells.


Assuntos
Alcaloides , Antineoplásicos , Aspidosperma , Catharanthus , Humanos , Catharanthus/química , Catharanthus/metabolismo , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Aspidosperma/química , Aspidosperma/metabolismo
12.
Fitoterapia ; 174: 105873, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417682

RESUMO

Diabetes mellitus stands as a metabolic ailment marked by heightened blood glucose levels due to inadequate insulin secretion. The primary aims of this investigative inquiry encompassed the isolation of phytochemical components from the bark of Kopsia teoi, followed by the assessment of their α-amylase inhibition. The phytochemical composition of the K. teoi culminated in the discovery of a pair of new indole alkaloids; which are 16-epi-deacetylakuammiline N(4)-methylene chloride (akuammiline) (1), and N(1)-methoxycarbonyl-11-methoxy-12-hydroxy-Δ14-17-kopsinine (aspidofractinine) (2), together with five known compounds i.e. kopsiloscine G (aspidofractinine) (3), akuammidine (sarpagine) (4), leuconolam (aspidosperma) (5), N-methoxycarbonyl-12-methoxy-Δ16, 17-kopsinine (aspidofractinine) (6), and kopsininate (aspidofractinine) (7). All compounds were determined via spectroscopic analyses. The in vitro evaluation against α-amylase showed good inhibitory activities for compounds 5-7 with the inhibitory concentration (IC50) values of 21.7 ± 1.2, 34.1 ± 0.1, and 30.0 ± 0.8 µM, respectively compared with the reference acarbose (IC50 = 34.4 ± 0.1 µM). The molecular docking outputs underscored the binding interactions of compounds 5-7 ranging from -8.1 to -8.8 kcal/mol with the binding sites of α-amylase. Consequently, the outcomes highlighted the anti-hyperglycemic attributes of isolates from K. teoi.


Assuntos
Apocynaceae , Alcaloides de Triptamina e Secologanina , Simulação de Acoplamento Molecular , alfa-Amilases , Estrutura Molecular , Alcaloides Indólicos , Compostos Fitoquímicos/farmacologia , Apocynaceae/química
13.
Biomed Pharmacother ; 173: 116273, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412715

RESUMO

Osteoarthritis (OA) is a degenerative joint disease, Increasingly, mitochondrial autophagy has been found to play an important regulatory role in the prevention and treatment of osteoarthritis. Koumine is a bioactive alkaloid extracted from the plant Gelsemium elegans. In previous research, Koumine was found to have potential in improving the progression of OA in rats. However, the specific mechanism of its action has not been fully explained. Therefore, the aim of this study was to investigate whether Koumine can alleviate OA in rats by influencing mitochondrial autophagy. In the in vitro study, rat chondrocytes (RCCS-1) were induced with IL-1ß (10 ng/mL) to induce inflammation, and Koumine (50 µg/mL) was co-treated. In the in vivo study, a rat OA model was established by intra-articular injection of 2% papain, and Koumine was administered orally (1 mg/kg, once daily for two weeks). It was found that Koumine effectively reduced cartilage erosion in rats with osteoarthritis. Additionally, it decreased the levels of inflammatory factors such as IL-1ß, IL-6, and extracellular matrix (ECM) components MMP13 and ADAMTS5 in chondrocytes and articular cartilage tissue, while increasing the level of Collagen II.Koumine inhibited the production of reactive oxygen species (ROS) in cartilage tissue and increased the number of autophagosomes in chondrocytes and articular cartilage tissue. Additionally, it upregulated the expression of mitochondrial autophagy proteins LC3Ⅱ/Ⅰ, PINK1, Parkin, and Drp1. The administration of Mdivi-1 (50 µM) reversed the enhanced effect of Koumine on mitochondrial autophagy, as well as its anti-inflammatory and anti-ECM degradation effects in rats with OA. These findings suggest that Koumine can alleviate chondrocyte inflammation and improve the progression of OA in rats by activating PINK1/Parkin-mediated mitochondrial autophagy.


Assuntos
Cartilagem Articular , Alcaloides Indólicos , Osteoartrite , Ratos , Animais , Condrócitos/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Ratos Sprague-Dawley , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Cartilagem Articular/metabolismo , Autofagia , Interleucina-1beta/metabolismo , Matriz Extracelular/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases/metabolismo
14.
Org Biomol Chem ; 22(11): 2271-2278, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38391281

RESUMO

Two previously unreported lignans (1-2) and four undescribed [11]-chaetoglobosins (3-6) were obtained from the culture extract of an endophytic fungus Pseudeurotium bakeri P1-1-1. Their structures with absolute configurations were determined by spectroscopic data analysis, single-crystal X-ray diffraction, electronic circular dichroism (ECD) calculations, the modified Mosher's method, and Mo2(OAc)4-induced electronic circular dichroism (ICD) experiments. Compounds 5 and 6 showed moderate cytotoxic effects against seven human cancer cell lines. Compounds 2-4 exhibited immunosuppressive activities on concanavalin A-induced T cell proliferation with IC50 values of 3.7, 3.4, and 14.5 µM, and on lipopolysaccharide-induced B cell proliferation with IC50 values of 4.1, 3.9, and 14.2 µM, respectively. Further investigation revealed that 2 and 3 induced apoptosis in activated T cells in a dose-dependent manner.


Assuntos
Ascomicetos , Lignanas , Humanos , Lignanas/química , Linhagem Celular , Alcaloides Indólicos , Imunossupressores , Estrutura Molecular
15.
Phytochemistry ; 220: 114012, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311151

RESUMO

Penigrines A-E (1-5), five undescribed azepine-indole alkaloids, were isolated from the fungus Penicillium griseofulvum. Their structures with absolute configurations were determined by NMR, HRESIMS, ECD calculation, and X-ray diffraction experiments. Penigrine C (3) possesses an undescribed 6-oxa-8-azabicyclo[3.2.2]nonane-7,9-dione moiety that fused to an indole core, and penigrines D and E (4 and 5) are a pair of epimers. The plausible biosynthetic pathways of 1-5 are proposed. Penigrine A (1) shows the potential for heart failure treatment.


Assuntos
Alcaloides Indólicos , Penicillium , Alcaloides Indólicos/química , Penicillium/química , Espectroscopia de Ressonância Magnética , Fungos , Estrutura Molecular
16.
Proc Natl Acad Sci U S A ; 121(7): e2318586121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38319969

RESUMO

Monoterpene indole alkaloids (MIAs) are a large and diverse class of plant natural products, and their biosynthetic construction has been a subject of intensive study for many years. The enzymatic basis for the production of aspidosperma and iboga alkaloids, which are produced exclusively by members of the Apocynaceae plant family, has recently been discovered. Three carboxylesterase (CXE)-like enzymes from Catharanthus roseus and Tabernanthe iboga catalyze regio- and enantiodivergent [4+2] cycloaddition reactions to generate the aspidosperma (tabersonine synthase, TS) and iboga (coronaridine synthase, CorS; catharanthine synthase, CS) scaffolds from a common biosynthetic intermediate. Here, we use a combined phylogenetic and biochemical approach to investigate the evolution and functional diversification of these cyclase enzymes. Through ancestral sequence reconstruction, we provide evidence for initial evolution of TS from an ancestral CXE followed by emergence of CorS in two separate lineages, leading in turn to CS exclusively in the Catharanthus genus. This progression from aspidosperma to iboga alkaloid biosynthesis is consistent with the chemotaxonomic distribution of these MIAs. We subsequently generate and test a panel of chimeras based on the ancestral cyclases to probe the molecular basis for differential cyclization activity. Finally, we show through partial heterologous reconstitution of tabersonine biosynthesis using non-pathway enzymes how aspidosperma alkaloids could have first appeared as "underground metabolites" via recruitment of promiscuous enzymes from common protein families. Our results provide insight into the evolution of biosynthetic enzymes and how new secondary metabolic pathways can emerge through small but important sequence changes following co-option of preexisting enzymatic functions.


Assuntos
Aspidosperma , Catharanthus , Alcaloides de Triptamina e Secologanina , Tabernaemontana , Tabernaemontana/metabolismo , Aspidosperma/metabolismo , Carboxilesterase/metabolismo , Filogenia , Alcaloides Indólicos/metabolismo , Alcaloides de Triptamina e Secologanina/química , Alcaloides de Triptamina e Secologanina/metabolismo , Plantas/metabolismo , Catharanthus/metabolismo
17.
Ann Bot ; 133(4): 509-520, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38320313

RESUMO

BACKGROUND AND AIMS: In the subfamily Poöideae (Poaceae), certain grass species possess anti-herbivore alkaloids synthesized by fungal endophytes that belong to the genus Epichloë (Clavicipitaceae). The protective role of these symbiotic endophytes can vary, depending on alkaloid concentrations within specific plant-endophyte associations and plant parts. METHODS: We conducted a literature review to identify articles containing alkaloid concentration data for various plant parts in six important pasture species, Lolium arundinaceum, Lolium perenne, Lolium pratense, Lolium multiflorum|Lolium rigidum and Festuca rubra, associated with their common endophytes. We considered the alkaloids lolines (1-aminopyrrolizidines), peramine (pyrrolopyrazines), ergovaline (ergot alkaloids) and lolitrem B (indole-diterpenes). While all these alkaloids have shown bioactivity against insect herbivores, ergovaline and lolitrem B are harmful for mammals. KEY RESULTS: Loline alkaloid levels were higher in the perennial grasses L. pratense and L. arundinaceum compared to the annual species L. multiflorum and L. rigidum, and higher in reproductive tissues than in vegetative structures. This is probably due to the greater biomass accumulation in perennial species that can result in higher endophyte mycelial biomass. Peramine concentrations were higher in L. perenne than in L. arundinaceum and not affected by plant part. This can be attributed to the high within-plant mobility of peramine. Ergovaline and lolitrem B, both hydrophobic compounds, were associated with plant parts where fungal mycelium is usually present, and their concentrations were higher in plant reproductive tissues. Only loline alkaloid data were sufficient for below-ground tissue analyses and concentrations were lower than in above-ground parts. CONCLUSIONS: Our study provides a comprehensive synthesis of fungal alkaloid variation across host grasses and plant parts, essential for understanding the endophyte-conferred defence extent. The patterns can be understood by considering endophyte growth within the plant and alkaloid mobility. Our study identifies research gaps, including the limited documentation of alkaloid presence in roots and the need to investigate the influence of different environmental conditions.


Assuntos
Alcaloides , Endófitos , Epichloe , Compostos Heterocíclicos com 2 Anéis , Lolium , Micotoxinas , Poliaminas , Epichloe/fisiologia , Endófitos/fisiologia , Alcaloides/metabolismo , Alcaloides/análise , Lolium/microbiologia , Simbiose , Herbivoria , Festuca/microbiologia , Festuca/metabolismo , Poaceae/microbiologia , Poaceae/metabolismo , Ergotaminas/metabolismo , Defesa das Plantas contra Herbivoria , Alcaloides Indólicos/metabolismo
18.
J Ethnopharmacol ; 328: 117921, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38369065

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Tabernaemontana genus belongs to the Apocynaceae family of which 30 species are found in Brazil. Some Tabernaemontana species are used by Brazilian indigenous people and other communities, or are listed in the Yanomami Pharmacopeia. Ethnopharmacological data include use(s) for muscle problems, depressed sternum, back pain, abscess, indigestion, eye irritation, earache, itching, vaginal discharge, as an aid for older people who are slow and forgetful, mosquito and snake bites, infection by the human botfly larvae, calmative, and fever. Obviously, many of these uses are attributed to the alkaloids found in Tabernaemontana species. AIM OF THE REVIEW: The aim is to gather information on Tabernaemontana species occurring in Brazil, as sources of monoterpene indole alkaloids (MIAs). In addition, we aim to collect reported experimental demonstrations of their biological activity, which may provide the foundation for further studies, including phytochemistry, the development of medicinal agents, and validation of phytopreparations. MATERIAL AND METHODS: The Brazilian Flora 2020 database was used as source for Tabernamontana species occurring in Brazil. The literature review on these species was collected from Web of Science, Scopus, PubMed, and Scifinder. The keywords included names and synonyms of Tabernaemontana species found in Brazil, which were validated by the Word Flora Online Plant List. RESULTS: A literature survey covering the time frame from 1960 until June 2023 resulted in 121 MIAs, including 48 not yet reported in the last review published in 2016. Some alkaloid extracts, fractions, and isolated alkaloids present evidenced biological activity, such as anticancer, anti-inflammatory, antinociceptive, antimicrobial, antiparasitic, antiviral, and against snake venoms, among others. Notably, ethnopharmacological based information has been the basis of some reports on Tabernaemontana species. CONCLUSIONS: Our literature survey shows that Tabernaemontana species present bioactive MIAs, such as voacamine and affinisine, demonstrating significant cytotoxicity activity against several tumoral cell lines. Those compounds can be considered promising candidates in the search for new anticancer drugs. However, the Amazonian plant biome is increasingly damaged, which may lead to the extinction of biological diversity. This threat may also affect Tabernaemontana species, which have scarcely been investigated regarding the potential of their phytochemicals for the development of new drugs.


Assuntos
Antineoplásicos , Alcaloides de Triptamina e Secologanina , Tabernaemontana , Idoso , Animais , Antineoplásicos/farmacologia , Brasil , Alcaloides Indólicos/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Tabernaemontana/química
19.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396642

RESUMO

Restricted production of fungal secondary metabolites hinders the ability to conduct comprehensive research and development of novel biopesticides. Okaramine B from Penicillium demonstrates remarkable insecticidal efficacy; however, its biosynthetic yield is low, and its regulatory mechanism remains unknown. The present study found that the yield difference was influenced by fermentation modes in okaramine-producing strains and performed genomic and comparative transcriptome analysis of P. daleae strain NBP-49626, which exhibits significant features. The NBP-49626 genome is 37.4 Mb, and it encodes 10,131 protein-encoding genes. Up to 5097 differentially expressed genes (DEGs) were identified during the submerged and semi-solid fermentation processes. The oka gene cluster, lacking regulatory and transport genes, displayed distinct transcriptional patterns in response to the fermentation modes and yield of Okaramine B. Although transcription trends of most known global regulatory genes are inconsistent with those of oka, this study identified five potential regulatory genes, including two novel Zn(II)2Cys6 transcription factors, Reg2 and Reg19. A significant correlation was also observed between tryptophan metabolism and Okaramine B yields. In addition, several transporter genes were identified as DEGs. These results were confirmed using real-time quantitative PCR. This study provides comprehensive information regarding the regulatory mechanism of Okaramine B biosynthesis in Penicillium and is critical to the further yield improvement for the development of insecticides.


Assuntos
Azetidinas , Azocinas , Alcaloides Indólicos , Penicillium , Penicillium/metabolismo , Perfilação da Expressão Gênica , Genômica/métodos
20.
Acta Biochim Biophys Sin (Shanghai) ; 56(3): 345-355, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38419497

RESUMO

Psoriasis is accepted as a chronic, inflammatory, immune-mediated skin disease triggered by complex environmental and genetic factors. For a long time, disease recurrence, drug rejection, and high treatment costs have remained enormous challenges and burdens to patients and clinicians. Natural products with effective immunomodulatory and anti-inflammatory activities from medicinal plants have the potential to combat psoriasis and complications. Herein, an imiquimod (IMQ)-induced psoriasis-like dermatitis model is established in mice. The model mice are treated with 1% rutaecarpine (RUT) (external use) or the oral administration of RUT at different concentrations. Furthermore, high-throughput 16S rRNA gene sequencing is applied to analyze the changes in the diversity and composition of the gut microbiota. Based on the observation of mouse dorsal skin changes, RUT can protect against inflammation to improve psoriasis-like skin damage in mice. Additionally, RUT could suppress the expression levels of proinflammatory cytokines (IL-23, IL-17A, IL-22, IL-6, and IFN-α) within skin tissue samples. Concerning gut microbiota, we find obvious variations within the composition of gut microflora between IMQ-induced psoriasis mice and RUT-treated psoriasis mice. RUT effectively mediates the recovery of gut microbiota in mice induced by IMQ application. Psoriasis is linked to the production of several inflammatory cytokines and gut microbiome alterations. This research shows that RUT might restore gut microbiota homeostasis, reduce inflammatory cytokine production, and ameliorate psoriasis symptoms. In conclusion, the gut microbiota might be a therapeutic target or biomarker for psoriasis that aids in clinical diagnosis and therapy.


Assuntos
Dermatite , Microbioma Gastrointestinal , Alcaloides Indólicos , Psoríase , Quinazolinonas , Humanos , Animais , Camundongos , Imiquimode/efeitos adversos , RNA Ribossômico 16S/genética , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Citocinas/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...